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Abstract

Uniform-DFT filter banks are an important class of filter banks and their theory is well known.

One notable characteristic is their very efficient implementation when using polyphase filters and the

FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear

phase are also an important class of filter banks and desired in many applications. Unfortunately. it

has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and

achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and

in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in

many applications) can be constructed for perfect reconstruction. Design examples are included which

illustrate the methods.
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I. INTRODUCTION

In the last decade research in filter banks and subband processing has occurred at a fast pace [12].

[16], [17]. In particular, subband processing of signals is now common in a number of applications

such as audio, image, and video encoders/decoders; acoustic echo cancelers used in teleconferencing

systems; and spread spectrum communications svstems [1]. In addition, emerging applications include

multiple target tracking in radar, high-data-rate digital receivers for satellite channels, and su ppression

of interference signals in wireless applications [7], [13], [63, [12]. As compared to equivalent fullband

processing, subband signal processing in these applications often leads to a performance ira:tease due

to the frequency band decomposition and potentially a reduction in conlputation due to the lower

sampling rate of the subband (component) signals.

An analvsis bank decomposes (analyzes) a signal, x bv partitioning its spectrum into frequency

bands or subbands by using a set of M bandpass filters (BPFs) denoted h0 ..... h.w-i in Fig. i. Once

partitioned, the signals are then downsampled by a factor of D (due to their reduced bandwidth).

Upon analysis, each of these subband signals (.r0 .... , xM-1) may be processed (subband processing).

After processing, the subband signals are synthesized into the fullband signal. 2. by tirst upsamplin_

(zero insertion) to the original sampling rate followed by bandpass filtering (to .... ,f_I-l) to renlove

spectral images introduced from upsampling. Such a systeln of upsamplers and bandpass (synthesis)

filters is referred to as a synthesis bank. The combination of analysis and synthesis banks is called a

filter bank [17].
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II. UNIFORM-DFT FILTER BANKS

One of tile more popular designs for filter banks, called the uniform-DFT filter bank. assumes that

all analysis, synthesis filters are frequency-shifted versions of an analysis synthesis prototype lowpass

filter (LPF), ho, f0 respectively [17]. The time-domain relations are then given by

hm(n) = ho('n)e _2'_'_[_-(x-_)/2]/_I

f_(n) = fo(n)d 2_'_['_-(x-_)/21/_! (1)

where m = 1,..., ."tl- 1 denotes the subband and N is the length of tile filter. The frequency-donlain

relations are then given by

Hm<_) --

(2)

A typical magnitude response of analysis/synthesis filters related by (2) with M = 4 is given in

Fig. 2.

H0 (e

A. Polyphase, Uniform-DFT Filter Banks

In the analysis bank shown in Fig. 1, much computation is wasted in tile implementation since

after filtering, only one out of every D samples is retained. Similar filtering inefficiencies occur in

the synthesis bank since only one out of every D samples is non-zero prior to svnthesis filtering. A

more efficient but equivalent implementation, called a polyphase, uniform-DFT filter bank relies on a

polyphase representation of h0 and f0 (prototype LPFs) and a discrete Fourier transform (DFT) and

inverse DFT (IDFT) as shown in Fig. 3 [12], [17]. Note that in Fig. 3, I = 3I/D is referred to as the

oversampling factor and will be discussed in the next section. The polyphase filter coefficients used in

Fig. 3 are given bv

e,_(_) = ho(nD- m)

rm(n) = fo(nD- m) (3)

where m = 0 .... , M- 1. As an example, if we assume 3I = 4. D = 2, and a causal. FIR analysis filter

prototype, h0 the polyphase filters would be given by

e0 = [h0(0),ho(2),ho(4),h0(6) .... iT

el = [0, h0(1),h0(3),h0(5),...]T

e2 = [0, h0(0),h0(e),h0(4) .... iT

e3 = [0,0, ho(1),ho(3),...; r. (4)

December 2. 1999 DRAI:T
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With the polyphase representation, analysis and synthesis filtering occurs at the lower, subband san>

pling rate resulting in a lower processing speed. In addition, the DFT and IDFT are implemented

with a fast-Fourier transform (FFT). These combined effects result in a significant computational

reduction.

In most of the literature, filter bank design is aimed at perfectly reconstructing .r (to within a scale

factor and delay) from the critically-sampled (D = M or I = 1) subband signals z0 .... , X._l-1 (Fig. :3).

Critically-sampled refers to the fact that the number of fullband samples per second equals the total

number of subband samples per second. In this case, one must carefully control the aliasing in the

subband signals through proper design of the analysis and synthesis filters. Many critically-sampled

designs are available that yield the perfect reconstruction property [15].

B. Oversarnpled, Polgphase, Uniform-DFT Filter Banks

A fundamental problem in processing critically-sampled subband signals is the large level ofsubband

aliasing which is present regardless of the analysis and synthesis filter designs due to the overlapping

filters. With such a large amount of aliasing (which acts as a disruptive noise signal), many subband

signal processing applications do not perform well and may require a large additional overhead to

partially compensate for the aliasing [.5].

One solution to the subband aliasing problem in applications is to oversample (D < M) the subband

signals to minimize the effect of the aliasing [12], [3]. We typically choose the oversampling factor to be

close to unity in order to minimize tile data rate or choose I = 2 for simple implementation as in Fig. 3.

In the latter case, this implies twice the total number of samples per second in the subbands than

are required a.t the fullband rate. Howver, even with oversampled subbands, many signal processing

applications can have fewer total conlputatious per sample as compared to the fullband case [4].

III. LINEAR PHASE FILTER BANKS

Linear phase filter banks are designed so that the analysis filters have a linear phase response.

This should not be confused with the idea that the frequency response of the filter bank has linear

phase, i.e. that the end-to-end impulse response of the filter bank is symmetric. There are many filter

bank applications that require linear phase analysis filters such as subband image coders and filter

bank-based digital receivers [13], [6], [18]. The basic theory of linear phase filter banks with perfect

reconstruction is also well-known (for complete details, the reader is referred to [11]).

DRAFT December 2, 190_9
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IV. UNIFORM-DFT, LINEAR PHASE FILTER BANKS

It has been shown that critically-sampled uniform-DFT filter banks in which tile analysis filters

have linear phase cannot be designed to have perfect reconstruction [8], [9]. In this section, we analyze

the uniform-DFT, linear phase filter bank and formulate a least-squares synthesis filter solution ill

the critically-sampled case which approximates perfect reconstruction. In the oversampled case. we

formulate a synthesis filter design that leads to perfect reconstruction.

A. Time-Domain Analysis

In order to formulate the design for tile uniform-DFT linear phase filter bank, we begin bv charac-

terizing the family of responses to a unit-pulse with delay, l or 5(7z - l) for 1 < l < D. In general, the

filter bank is not time-invariant but rather periodically time-invariant with period D thus resulting in

our need to consider this family. The subband signals (Fig. 1) in response to 5(n - l) can be written

as

z_,l(n) = hm(nD - l). (.5)

After upsampling and synthesis filtering the subband signals in (5), we have

Ym,l(n) = Ehm(l_'D- [)fm(n- ]_'D) (())

k

as in Fig. 1. By substituting the prototype filter relations in (1) into (6) we have

y_,l(n) = _ ho(kD- l)fo(n - kD)e :2"m[_-t-('v-lIl/M. (7)
k

The response of the filter bank to 5(n - 1) is then sum of the signals in (7) or

since

AI - 1

 t(n) =
m=O

= __, ho(kD- l)fo(n - kD)
k

1 - ea2_'['_-t-(N-1 )]

1 -- £j2rr[n-l-(3;-1)l/M

M _ _ ho(kD-l)fo [l + (.\'- 1)- I'D- q3S] d [n- l-(N- 1)+ q3I]
q k

1 - e j2_'['_-t-(x-1)]

1 - e j2r'[n-l-(N-1)]/M
= E.IIS[n-l-(N- 1)+qM].

q

(s)

One condition for perfect reconstruction (with delay) is that the family of responses to the delayed

unit-pulse is equal to a family of equivalently delayed unit-pulses. Specifically we require

= 5[,- l- (.\- 1)] (to)

December 2. 1999 DRAFT
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for l < l < D.

We can arrange the conditions in (10) using (8) in matrix form as

1
Hfo - 31zX

where

0 ho(D ) 0 ho(O)

ho(D + 11 0 ho(t) 0

0 ho(qmax, l D) 0 ho(qmax,l D -- D)

ho(qmax,2D Jr D -- 1) 0 ho(qmax,2D - l) 0

[ : _ [

0 0 0 0

0 0 0 0

with dimension

H

(2L1);'+1

0 0 0

0 0 0

0 0 ho(0)

0 0 0

Z

0 0 ho(qrnax,D_lD+2l

ho(qmax. DD + 1] 0 0

× _\r,

(11)

(1:3)

N - 1 + lJqmax,/ = )Z)-- '
(14)

and

7"

0 ..- 0 1 ... 1 0 --- 0 ]

"3

A __= _ _' J0 _7"_D /'v-t+_/-D _=l .v-t+tL.--xr-J-IZL.._ l = t L M J

(15)

B. Critically-Sampled Case

In the critically-sampled case, D = A,I we consider the matrix form of (10) for each 1 individually.

This is equivalent to decomposing the matrix equation in (11) into a series of matrix equations [due

to the decoupled nature of (11)] as

1
I-Itf_ - & (1(_)

51

for 1 < I < D where

Ill

ho(3I - l) 0

ho(2M - l) ho(M - l)

:

ho(qm+x,lA'I - l) ho [(qmax,l -- 1)31 - l]

0 0

0 0

• .. 0 0

-.. 0 0

'.. :

• .. ho(2M - I) ho(+l/- 1)

".. :

o hoCq,,+,+,.x.P,_- l) l.,o[(q,,,+._.]- _)__[ - .,']

0 0 ho (q,,,_,,,,+31 - 1)

;)

DRAFT Decerrd)er 2, 1!)9!)
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and

fo [(N - 1) + l - qmax,l.'tI]

fo [(N - 1) + I - (qmax,/ - 1) ,_[]

f0 [(x - 11+ t - 2_i]

f0 [(-Y- 1) -I-l - M]

(is)

IT

[. 0 ... 0 _1 0 ... 0 (19)

L /X-l+Z|
k M .J

Note that only a subset of the synthesis prototype coefficients are present in (18). However. over the

full range of l all coefficients are accounted for.

By choosing the filter length, N = pM for integer p, the matrix Hz is (2p- 1) × p and {'t is p × 1.

For this case, our problem is overdetermined and as well known, there is no solution for the set of

f1,{'2 .... f_t that constitute the synthesis prototype filter, f0 and leads to perfect reconstrHction [9].

However, we can formulate a new, least-squares (LS) design problem as follows.

Given: H_ E _(2v-1)×P, Sl E ?R(2v-1)xl for 1 < l < ._I

Minimize: V(t'l) = ]]51 - I2Itfl[]2 for 1 < 1 < M.

The LS solution to this problem is

ft = IZI+_z (20)

where

ICI+ = (I_THz)-_fI; (2t)

is the pseudoinverse of I2Ii, det(I2ITIT-I/) 7_ 0, and I2I_ " is the complex conjugate transpose of HI.

For the choice N = pM + q where 1 < q _< 3I - 1, f_ will have a different length according to l

but the problem remains overdetermined and the least-squares solution in (20) still holds. General LS

approximations of perfect reconstruction filter banks are discussed in [14].

By design, the analysis prototype LPF, h0 has a linear phase and symmetric impnlse response of

the form

ho(n) = ho[(N- 1)-hi (22)

where n = 0,..., N- 1. From (1) it is clear that the analysis filters, hi, .... h._t-1 will also have linear

phase responses. We can prove that under the formulation in (11), the LS solution for tim synthesis

December 2, 1999 DRAFT
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prototype LPF fo will also have a linear phase and hence tile synthesis filters fl ..... fxt-1 wilt also

have linear phase responses• The proof is as follows•

Consider the case where N = pM. We have qmax = P from (14), and applying (:22) to (117) and

substituting the result into (16) we have

ho [(N -1) + l - M]

ho[(N - 1)+ l - 2M]

ho(l - 1)

0

0

0

0

0

ho[(x - 1)+ t - M]

ho [(N - 1) +l- 2M]

ho(/- 1)

fo(t- 1)

fo(l - 1 + M)

/0 [(.v - 1)+, - 2M]

/o [(x - 1) + t - M]

0

= 1

0

I
i 0

(2:3)

Now consider the vector

fo (.xt - t)

fo (2M - t)

/o (.v - M - l)

£ (x - t)

(24)

and the equivalent to (23) which uses f_ instead of ft

ho(X - t)

ho(X - .;t - _)

ho(M - t)

0

• . 0

". 0

'. ho(N - 1)

• . ho(N-M-l)

0 ho(M - l)

fo(._/ - l)

fo(2._.r- l)

fo (N - M -1)

fo(X-1)

0

0

1

0

.0J

(2.5)

Equation (25) is identical to (16) except that elements of the matrix along any diagonal are in reverse

DRAFT December 2. 1991)
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order• Vge can rewrite (25) as

ho(M-l) 0 -.. 0

ho(2:_I- _) "'. '.
• , •

". ". 0

ho( N - l) "'. ho( M - l)

0 ". "'. ho(2M-1)

: ",• "

0 ... 0 ho(N- 1)

fo(N-l)

fo(.\: - ._s - l)

fo (2._I - t)

fo (M - l)

0

0

= 1

Using tile LS solution given in (20) in both (23) and (26) yields fo that satisfies

0

0

(26)

fo(n) = fo(N- l-n) (27)

or in other words, fo also has linear phase. The same result can also be shown for the case where

N = pAI+ q where q = 1,..., 31 - 1.

C. Oversampled Case with Integer Oversampling Factor

We next consider the oversampled case where the oversampling factor• I _> 2 is an integer. In this

case, we use (16) but with

ho(D-l)

ho(2D - I)

f-II = ho(qma×jD - l)

0

0

0

ho(D-l)

ho[(q_.... ,- 1)D-l]

0 '-

• . ho(2D - l)

0 ho(qmaxJD - l)

• " " O

0

0

htj( D - I)

ho [(qn,_×.l - 1)D- l]

h0 (q ...... _D - l)

(26)

f0 [(X - 1) + l - 'tn,a×.tD]

fo [(N - 1) + l - (qma×•t - 1) D]

f_ = : (2!I)

f0[(•Y- 1)+l-2D]

.t0[(N- 1)+l-D]

l= 1,...,D, and qm_×,t is given by (14).

By choosing N : p:'tl for integer p, the matrix I:It is (2p - 1) x Ip and t't is lp × 1. lot" this case.

our problem is underdetermined and there exists an infinite number of solutions for fl and hence fu

December 2. 1999 DRAFT
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that lead to perfect reconstruction. We therefore reformulate the design problem so as to choose the

f0 that has minimum stopband energy. Assume the cutoff frequency of the analysis prototype filter is

_'c = _r/M. Then the synthesis prototype LPF we choose minimizes the cost function

J(fo) = IFo(#_)l 2d,_ (30)
c

where

_'V- 1

F0(_J_) - _ fo(.)_ -j_'_. (31)
n=0

Substituting (31) into (30) we have

N-I N-l-m

N-I [f_ (3,1-1) ] 21 E f0(m) Ea(fo) = _ ("1 K -_:o _=,
n----O

_

fo(m + k)sinc(t'/).[)

(32)

where sinc(x) -- sin(_) and
7r._

S __

0 lsinc(_) 1sinc (-_7) .•• Isinc( N-1---_- )

½sine (_) 0 ½sine (_) •" • }SillC ( N-2---_ )

: ... ... ". . :

lsinc(_) ½sine( N-2'.-2T-, "'" ½sinc(,_l) 0

(:)3)

We rewrite (32) as

J(fo) - (M _I 1)re foTufo (34)

where

2
U = I - ( __-=--_/S (35)

is a real. symmetric matrix• Since J(fo) > 0 for all fo, U is a positive definite nlatrix an(l there exists

a non-singular matrix C that satisfies

cTuc

/_o

(36)

_\ N - I

where )_o,'", )_,\'-1 are the positive eigenvalues of U. Define

fo = Pfo (37)

DRAFT December 2, 1999
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where

v%

p =

Using (36)-(38)in (34) we have

J(fo) - (M._- 1)z,-T-f_fo.

Substituting fo = P-if0 into (11) we have

c -1 (3s)

39)

1
Hp- 1['9 _ A (40)

M

or

where

1
IZI/'o- A (41)

M

I2I = HP -1 (t2)

and has dimension (_2_ D) x N. We can now formulate the design problem for tile oversampled case

(integer I) under the minimum stopband constraint.

,- _(-_-D)xN A E ,_(_-D)xlGiven: I21E _

Minimize: V(g) = hie0112
1

Subject to: I:I}'o = _A.

The LS solution to this problem is

where

1
fo - t:I+A

M
143t

= H"/_lI:II:l') -t (-i-l)

is the pseudoinverse of I2I, det(I/IIiI ") :_ 0, and I2I" is the COnlplex conjugate transpose of H. Given

the solution in (43), the synthesis prototype filter coefficients are then given by

fo : P-1t'o. (4.5)

December 2. 1999 DRAFT
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D. Ot, ersampled Case with Rational Oversampling Factor

The dimension of H given in (13) which is a function of N, M, and D determines whether the design

problem is over-determined (no solution for fo) or under-determined (an iufinite number of sohltions

for fo)- Depending on the case, we may design f0 according to the previous cases.

V. DESIGN EXAMPLES AND PERFORMANCE ANALYSIS

The design algorithm for uniform-DFT linear phase filter banks is as follows.

1. Design an analysis prototype LPF, he with linear phase

2. (Critically sampled case) Determine I_Ii for each l as in (17)

(Oversampled case) Determine ttI as in (42)

3. (Critically sampled case) Compute ft for each I according to (20)

(Oversampled case) Compute f0 according to (4,5)

4. The synthesis prototype LPF, f0 is constructed according to (18) or (45) for the critically sampled

or oversampled case, respectively, f0 will be linear phase.

A MATLAB program which implements the above algorithm is available at [10]. We present several

design examples illustrating the method.

Example 1 (Critically-sampled) Here we have fil = D = 4 and the analysis prototype LPF is de-

signed with a length N = 32, Hamming-windowed sinc function (firl in MATLAB). Figs. 4 and 5

illustrate magnitude responses of the prototype filters. Fig. 6 illustrates the worst-case impulse re-

sponse, i.e. the response to 5(n-l) that has the largest magnitude component (artifact)other than the

main, delayed impulse. Fig. 7 illustrates the magnitude response of the filter bank for the worst-case

impulse response.

Example 2 (Oversampled) Here we have 31 = 4. D = 2 and the analysis prototype LPF is designed

with a length N = 32, Hamming-windowed sine function (firl in MATLAB). Figs. 4 and g illustrale

the magnitude responses of prototype filters. Fig. 9 illustrates the impulse response, and Fig. 10

illustrates the magnitude response of the filter bank for the worst-case impulse response.

VI. CONCLUSIONS

This paper has presented a least-squares solution to the design of uniform-DFT linear 1)hase filter

banks. In the critically sampled case, the design yields near perfect reconstruction while in the

oversampled case, the design yields perfect reconstruction. An algorithm aim examples were presented

DRAFT December 2. 1999
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to demonstrate the method.
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Fig. 1. M-subband, filter bank with subband processing

Fig. 2.
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